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Semiflexible macromolecules in quasi-one-dimensional confinement:
Discrete versus continuous bond angles
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The conformations of semiflexible polymers in two dimensions confined in a strip of width D are
studied by computer simulations, investigating two different models for the mechanism by which
chain stiffness is realized. One model (studied by molecular dynamics) is a bead-spring model in
the continuum, where stiffness is controlled by a bond angle potential allowing for arbitrary bond
angles. The other model (studied by Monte Carlo) is a self-avoiding walk chain on the square
lattice, where only discrete bond angles (0◦ and ±90◦) are possible, and the bond angle potential
then controls the density of kinks along the chain contour. The first model is a crude description of
DNA-like biopolymers, while the second model (roughly) describes synthetic polymers like alkane
chains. It is first demonstrated that in the bulk the crossover from rods to self-avoiding walks for both
models is very similar, when one studies average chain linear dimensions, transverse fluctuations, etc.,
despite their differences in local conformations. However, in quasi-one-dimensional confinement two
significant differences between both models occur: (i) The persistence length (extracted from the
average cosine of the bond angle) gets renormalized for the lattice model when D gets less than the
bulk persistence length, while in the continuum model it stays unchanged. (ii) The monomer density
near the repulsive walls for semiflexible polymers is compatible with a power law predicted for the
Kratky-Porod model in the case of the bead-spring model, while for the lattice case it tends to a
nonzero constant across the strip. However, for the density of chain ends, such a constant behavior
seems to occur for both models, unlike the power law observed for flexible polymers. In the regime
where the bulk persistence length ℓp is comparable to D, hairpin conformations are detected, and
the chain linear dimensions are discussed in terms of a crossover from the Daoud/De Gennes “string
of blobs”-picture to the flexible rod picture when D decreases and/or the chain stiffness increases.
Introducing a suitable further coarse-graining of the chain contours of the continuum model, direct
estimates for the deflection length and its distribution could be obtained. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4929600]

I. INTRODUCTION

Semiflexible polymers confined in narrow channels have
found abiding interests recently, both in experiments,1–14

analytical theory,15–25 and in computer simulations.26–39 From
the application side, this problem is of great interest for the
detection of single DNA molecules, separating them by size,
and to develop tools for their sequence analysis. On the theo-
retical front, confined semiflexible polymers pose a variety of
challenging questions: what aspects of the behavior are specific
to a particular polymer, and what aspects of the behavior are
generic? For fully flexible polymers confined into cylinders
with non-attractive walls under good solvent conditions, one
expects a fairly universal picture as soon as the cylinder diam-
eter D is much bigger than the size ℓ of an effective segment.
Then scaling theory predicts40,41 that a chain takes a cigar-
like conformation of length L∥ ≈ Dnb where nb is the number
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of “blobs” of diameter D forming a one-dimensional string.
Inside each blob self-avoiding walk (SAW) statistics prevails,
and hence the number of monomers n per blob satisfies the
relation D ≈ ℓnν, where ν is the Flory exponent,41 and pref-
actors of order unity in such scaling arguments are omitted, as
usual. Noting that the total number of monomers per chain is N
= nbn, one readily concludes L∥ ≈ ℓ(D/ℓ)1−1/νN . This result
has been verified by simulations of various coarse-grained
models (e.g., Refs. 42–50, 52, and 53).

However, when we deal with semiflexible chains, the
persistence length ℓp introduces already additional length
scales for chains in bulk solution. Indeed, for contour lengths
L = (N − 1)ℓ, the chain conformation in a coarse-grained view
may resemble a flexible rod of diameter ℓ for L < ℓp, while for
L ≥ ℓp in d = 3 dimensions, the polymers resemble Gaussian
coils, with a mean-square end-to-end distance ⟨R2⟩ = 2ℓpL,
as long as excluded volume effects can be neglected. If one
models a semiflexible polymer as a freely jointed chain of rods
that have length ℓp and diameter w (Fig. 1(a)), one concludes
(that in d = 3 dimensions) excluded volume effects become
relevant54–57 if L exceeds L∗ ≈ ℓ3

p/w
2 and hence the associated
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FIG. 1. Some coarse-grained models for semiflexible polymers (schematic).
Case (a) shows a model where rigid cylinders of length ℓp and diameter w are
freely jointed at their links. The excluded volume for a link of another chain
(displayed in lighter gray) is a disk of height w and diameter ℓp, as indicated
by broken lines. This type of model is used as an input for the Flory-theory
treatment. Case (b) shows a model for alkane chains with rigid bond lengths
and perfect tetrahedral bond angles, so that the chain fits on an ideal diamond
lattice (the sites of the lattice are shown by open circles, connected by thin
bonds). The monomers (CH2-groups) are shown as black dots, connected by
C–C bonds (thick lines). An all-trans sequence of n1 bonds (torsion angles
ϕ = 0 in the all-trans sequence) terminates by a gauche ± state (torsional angle
ϕ =±120◦, highlighted by an arrow) where a differently oriented all-trans
sequence of n2 bonds follows. Case (c) shows a two-dimensional generalized
self-avoiding walk model on the square lattice. Due to an energy penalty for
±90◦ kinks along the chain, the numbers of straight sequences of bonds along
the x-axis (nx) and along the y-axis (ny) typically are much larger than unity.
A possible definition of the persistence length then is ℓp = ⟨nx⟩a = ⟨ny⟩a,
where a is the lattice spacing.

chain radius R∗ ≈ ℓ2
p/w. For ℓp < L < L∗, the conformation

of a semiflexible polymer in d = 3 dimensions under good
solvent conditions resembles a Gaussian coil, and only for L
> L∗ does one find swollen coils, ⟨R2⟩ ≈ ℓ2/5

p w2/5L6/5 (if one
uses the Flory estimate41,58 ν = 3/5 instead of the more accu-
rate estimate59 ν ≈ 0.5877). In d = 2, however, this inter-
mediate Gaussian regime is absent,55,60 and for L ≈ ℓp, one
immediately crosses over to two-dimensional self-avoiding
walk like conformations, with ⟨R2⟩ ≈ ℓ1/2

p L3/2 (remember ν
= 3/4 in d = 2).41,58

We now draw attention to the length scales of confined
semiflexible polymers. For semiflexible chains confined in a
cylinder or in a planar slit of diameter (or width) D, the Odijk
deflection length15 (Fig. 2(a))

λ ≈ D2/3ℓ1/3
p , (1)

which describes the typical length scale over which a chain
maintains its orientation in a very narrow channel (D ≪ ℓp),
gives rise to additional length scales due to hairpin forma-
tion,22,61 such as the typical distance g between neighboring
hairpins (Fig. 2(a)), when D is of the same order as ℓp. While
one expects that semiflexible chains in wide channels (D
≫ ℓp) also are compatible with the Daoud-De Gennes40

picture of a string of blobs, the crossover from the Odijk regime
(D ≪ ℓp) where L∥ differs from L only by a small correction
(of order15,45 (D/ℓp)2/3) to this regime is still a matter of
debate.1,27–31,36 However, we note that Eq. (1) is based on the
use of the Kratky-Porod model of wormlike chains62,63 which
describes the polymer in terms of a contour r⃗(s) in space, s
being a coordinate along this contour, and the Hamiltonian
involves a single parameter, the bending rigidity κKP,

H = κKP

2

L
0

ds(d2r⃗
ds2 )2. (2)

The persistence length ℓp is related to κKP via ℓp = κKP/kBT
(in d = 3) or ℓp = 2κKP/kBT (in d = 2, respectively).

Of course, linear macromolecules are chain molecules
where discrete monomers are linked together with covalent
chemical bonds along the backbone of a chain; a continuum
model such as Eq. (2) can make sense only if the number nm

of such monomers on the length scale ℓp is very large. This
is the case for double-stranded (ds) DNA, where in typical
cases, ℓp ≈ 50 nm64 and ℓ ≈ 0.26 − 0.5 nm;65 however, when
we consider a situation where D is significantly smaller than
ℓp and two hairpins have to fit into the scale D (Fig. 2(a)), the
accuracy of such continuum descriptions seems to us some-
what doubtful. Moreover, it also is of interest to consider also
polymers with smaller persistence length, even almost flexible
polymers like polyethylene (PE), Fig. 1(b), and polystyrene
(PS) exhibit already some local stiffness that needs to be
accounted for, and many other rather stiff synthetic polymers
exist. Thus, while for PE at T = 400 K, ℓp ≈ 0.75 nm (and
the length ℓ of the C–C bond is 0.15 nm)66 and for PS cor-
responding literature estimates67,68 are ℓ = 0.25 nm, ℓp ≈ 1.0
− 1.15 nm, a comparative study of various synthetic poly-
mers69 has yielded estimates for ℓp in the range from 1 nm
to 42 nm, giving also evidence for the double crossover (from
rods to Gaussian coils and then to swollen coils) with

FIG. 2. Some models for confined semiflexible chains:
Case (a) shows the Kratky-Porod wormlike chain in a
strip of width D, illustrating the definition of the deflec-
tion length λ and the typical distance g between neigh-
boring hairpins. Also the component of the end-to-end
distance parallel to the boundaries R∥ is indicated. Case
(b) shows a bead-spring model, where flexibility is con-
trolled by a potential Ub(θi) for the bond angles θi.
Walls are indicated by particles touching each other. Case
(c) shows the model of case (Fig. 1(c)) assuming con-
finement in a strip of width D, displaying also a lattice
analog of a double hairpin configuration.
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increasing contour length, in bulk solution under good solvent
conditions. For biopolymers one can find examples where ℓp
≈ 25 nm (acetan) or ℓp = 120 nm (xanthan),70 and thus, we
prefer not to constrain ℓp in our study to a particular value, but
rather find it useful to vary it from the fully flexible limit to
very stiff chains.

We focus on the fact that for semiflexible polymers,
different coarse-grained models are useful (see Fig. 1), depend-
ing on the underlying chemistry of the macromolecules that are
studied which may differ in their mechanism of flexibility.71

For dsDNA (under many conditions of interest), there is no
conformational disorder on length scales much less than ℓp,
and flexibility only arises due to the gradual accumulation of
the effect of small deviations of valence angles, bond lengths,
etc., from their energetically preferred average values. Such
deviations inevitably are present due to thermal vibrations.71

In polymers such as PE and PS, however, the dominating
mechanism of flexibility is of the type of the rotational isomeric
states (RIS) model,72 where the chain can be viewed as a
succession of all-trans sequences (n C–C bonds where the
torsion angle ϕ = 0), separated by gauche (g±) states where
the torsional angle is ±120◦ (Fig. 1(b)). The typical length
of all-trans sequences is controlled by the depth of the trans-
minimum in the torsional potential relative to the gauche
minima, and thus strongly temperature-dependent.

In the context of computer simulations, a much simpler
model of this type is defined on the square (Fig. 1(c)) or simple
cubic lattice, where one models macromolecules simply as
self-avoiding walks on these lattices, modeling local chain
stiffness via introduction of an energy penalty ϵb whenever
the walk makes a ±90◦ turn. While this model clearly is only
a crude caricature of any real polymer, it shares the property
of the alkane-type chains that the local chain contour does
not resemble the smooth wormlike chain picture implied by
Eq. (2). We feel that different coarse-grained models of semi-
flexible polymers may be needed for different circumstances:
models of the type of Figs. 1(b) and 1(c) may be appropriate for
the description of an alkane chain in a carbon nanotube, while
the wormlike chain model may be more appropriate for DNA
in channels that are 150 nm wide.1

Of course, it is well-known particularly for biomolecules
that one has to deal there with a multitude of energy scales
and length scales, and the optimum choice of a coarse-grained
model does depend on the phenomena under study.73,74 As a
disclaimer, we emphasize that the models shown in Figs. 1
and 2 are not meant as an exhaustive list: there are many other
interesting models in the literature that we do not discuss here
(e.g., Refs. 75 and 76). In our paper we shall also not discuss
further the model of Fig. 1(a), although it was used in related
studies.33,38 Here, we shall only focus on a comparison of
the two models of Figs. 2(b) and 2(c), both in the bulk and
under confinement, to clarify to what extent their properties are
universal and to find out what the consequences of different
assumptions (such as discrete versus continuous bond angle
distributions) are. Also the question to what extent the worm-
like chain model (Fig. 2(a)), which ignores the fact that there
are individual monomers along a chain rather than a continuous
mass distribution, describes the properties of these models
accurately will be addressed. Thus, it is the aim of this study

to elucidate some general questions on the concept of coarse-
graining of macromolecules and study the question which
properties of (confined) semiflexible polymers are universal
and which are model-dependent.

In Sec. II, the models studied and the simulation method-
ologies will be briefly summarized. In Sec. III, a comparison
of the properties of single chains in bulk (two-dimensional)
solution for both models will be given. Sec. IV describes our
findings for confined chains, focusing on the case of confine-
ment by repulsive boundaries only. We shall address also the
problem of the extent of depletion of monomers near these
repulsive walls, since the density profiles of flexible and semi-
flexible polymers near hard walls are predicted to have char-
acteristic differences.77 Throughout this work, we pay atten-
tion to the fact that the persistence length is a meaningful
concept for the local chain stiffness only,78,79 it must not be
associated with the decay of long range orientation correla-
tions along the chain contour. Sec. V finally summarizes our
conclusion.

II. MODELS AND SIMULATION METHODOLOGY

In this paper, we consider models in d = 2 space dimen-
sions only. Although this restriction precludes a direct compar-
ison of our results with most experimental work, there is the
major simplifying feature, that unconfined semiflexible poly-
mers exhibit a single crossover, from rods to self-avoiding
walk like chains.55–57,80 The intermediate region of Gaussian
random walk-like chains does not occur, and there is evidence
to believe that this intermediate regime complicates the cross-
over behavior of confined semiflexible polymers considerably
(see, e.g., Refs. 29 and 30). Also the complication that knots
may form (which is relevant for dsDNA in various circum-
stances81,82) cannot occur in d = 2. Our preliminary work34,36

on confinement effects on chains in d = 2 already has indi-
cated a rather complex behavior, and hence in the present
work, we shall address this problem in more detail, with an
emphasis on the question to what extent the phenomena are
universal and which aspects are model-dependent. Hence, we
shall contrast results for the lattice model of Figs. 1(c) and
2(c) with results for the bead-spring model of Fig. 2(b) and
shall explore to what extent the predictions of the Kratky-Porod
wormlike chain model in the continuum (Fig. 2(a)) can be
verified.

In our lattice model, each effective monomer occupies a
lattice site of the square lattice, and the bond length ℓ between
nearest neighbors along the chain is just the lattice spacing,
taken as a unit of length for this lattice, so the contour length
L, related to the number of beads N as L = (N − 1)ℓ also is
an integer. Both for this model and the continuum bead-spring
model we assume that the standard bond bending potential (θ
is the angle between subsequent bonds along the chain)

Ub(θ) = ϵb(1 − cos θ). (3)

On the lattice, however, only angles θ = 0◦ and ±90◦ are
permitted (θ = 180◦, i.e., immediate reversals are forbidden
by excluded volume, of course) and so Ub(θ) = 0 if the SAW
continues straight on, while Ub(θ) = ϵb if it makes a kink. The
partition sum of the semiflexible SAW hence can be written as
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a polynomial in the Boltzmann factor qb = exp(−ϵb/kBT),
ZN(qb,D) =


config.

CN,Nbend(D)qNbend
b

. (4)

Here, the sum over configurations includes all SAW’s with
y coordinates of the monomers in the range 1 ≤ y ≤ D, to
realize the confinement by repulsive (one-dimensional walls)
placed at y = 0 and y = D + 1 (so the geometric distance
between the walls is D + 1). Of course, the limit D → ∞means
we consider an unconfined polymer.

This problem can be studied very efficiently with Monte
Carlo (MC) simulations applying the pruned-enriched Rosen-
bluth method (PERM).57,83,84 This chain growth algorithm
with “population control” and “depth-first implementation”
has been thoroughly reviewed in Ref. 84, where the reader
can find more details. We could study chain lengths up to
N ∼ 105, for a wide variety of chain stiffness, varying qb = 1.0
(fully flexible chains) to qb = 0.005 (rather stiff chains, with
a persistence length34,57 ℓp ≈ 118ℓ). Note that both for the
lattice model and the continuum model the persistence length
is extracted from ⟨cos θ⟩ via

ℓ/ℓp ≡ −ln(⟨cos θ⟩). (5)

We recall that the persistence length has a physical meaning
(for real polymer chains) only as a characteristic for the local
angular correlation between neighboring bonds but cannot
be interpreted in terms of orientational correlations for large
chemical distances along the chain:57,78,79 the textbook for-
mula58 ⟨cos θ(s)⟩ ∝ exp(−ℓs/ℓp) for the angular correlation of
bonds a chemical distance ℓs apart along the contour holds
only for Gaussian phantom chains, while in reality ⟨cos θ(s)⟩
decays with a power law in s. We emphasize this simple point
again, because the misleading textbook formula still is widely
used in the literature, without being aware of its limitations
(it makes sense only for ℓs < ℓp, of course). The persistence
length as defined in Eq. (5), however, can be related to the
stiffness parameter κKP of the Kratky-Porod model, since for
stiff chains ⟨cos θ⟩ is close to unity and hence ℓ/ℓp ≈ ⟨θ2⟩/2.

If excluded volume could be neglected on the local scale,
we would have ⟨cos θ⟩ = 1/(1 + 2qb) in d = 2 and hence ℓp/ℓ
≈ 1/(2qb) for small qb. The data (Table I57) rather imply ℓp/ℓ
≈ 0.61/qb = 0.61 exp(ϵb/kBT). This exponential dependence
between ℓp and ϵb is a characteristic of the lattice model

TABLE I. Estimates of the persistence length ℓp/ℓ (Eq. (5)) of polymer
chains in the bulk for the lattice model and the continuum model.

Lattice Continuum

qb ϵb ℓp/ℓ κ ℓp/ℓ κ ℓp/ℓ

1.0 0 1.06 1.5 2.74 48.0 79.04
0.4 0.92 2.00 2.0 3.30 64.0 105.60
0.2 1.61 3.50 3.0 4.58 96.0 159.10
0.1 2.30 6.46 4.0 6.05 128.0 212.40
0.05 3.00 12.35 6.0 9.25 192.0 319.10
0.03 3.51 20.21 8.0 12.56 320.0 532.50
0.02 3.91 30.02 12.0 19.27
0.01 4.61 59.22 16.0 25.91
0.005 5.30 118.22 32.0 52.62

(since thermal activation is required to make a bend), but
a similar variation can also be expected for the alkane-type
chains (Fig. 1(b)), where the energy difference between the
gauche ± and trans-minima of the torsional potential would
correspond to ϵb.

The bead-spring model used by us describes excluded
volume interactions between the monomers by the standard
short range Lennard-Jones (LJ) potentialULJ(r) that is cut off in
its minimum and shifted to zero, r being the distance between
monomers,

ULJ(r) = 4ϵ[(σ
r
)12 − (σ

r
)6] + ϵ, for r ≤ 21/6σ, (6)

ULJ(r) = 0 for r > 21/6σ. (7)

Here, σ is the effective diameter of a monomer and ϵ the
strength of the potential. The connectivity between neighbor-
ing monomers along the chain is ensured by using the Finitely
Extensible Nonlinear Elastic (FENE) potential85

UFENE(r) = −1
2

kR2
0 ln(1 − r2/R2

0), (8)

where R0 = 1.5σ is the maximum extension of the spring, and
k the spring constant. We choose σ as the unit of length for
this off-lattice model and ϵ/kB as the unit of temperature T .
Choosing T = 1.2 throughout and k = 30, the average bond
length ℓ = 0.971 and we find that this length does not depend
on the choice of the parameter ϵb in Eq. (3), which we use
here as a bond bending potential as well. However, unlike the
case of the lattice model, a continuous range of bond angles
θ from θ = 0 to (almost) θ = π is possible, and the parameter
ϵb now can be related to the rigidity parameter κKP of the
Kratky-Porod wormlike chain model, as is well-known (see,
e.g., Ref. 80 where it is shown that κKP/ℓ = ϵb). In order to
easily distinguish in the present paper the data of the continuum
model from those of the lattice model, we shall define κ ≡ ϵb
for the data of the continuum model, to remind the reader that
this parameter (apart from the factor ℓ which is very close to
unity anyway) essentially measures the chain rigidity in the
usual way. Likewise, the “chain length N” for long chains
in our units is numerically very close to the contour length
L (strictly speaking, L = (N − 1)ℓ, of course). The potential
for the monomer-wall interaction is chosen in full analogy to
Eqs. (6) and (7), namely, when we orient the walls along the
x-axis, we have

Uwall(y ′) = 4ϵ[( σ
y ′
)12 − ( σ

y ′
)6] + ϵ for y ′ ≤ 21/6σ, (9)

Uwall(y ′) = 0 for y ′ > 21/6σ, (10)

and y ′ = y at the lower wall while y ′ = D − y at the upper
wall.

When we compare the continuum model to the lattice
model, the correspondence of what a particular strip thick-
ness means is somewhat subtle. On the lattice, the geometric
distance between the two walls is D + 1 lattice spacings, but
only a region of extent D (lattice rows n = 1, 2, . . . , D) is
accessible for occupation by the monomers of the chain. In the
continuum, the full range 0 < y < D is in principle accessible
for the monomers, but due to the repulsive potential, the regions
0 < y < σ/2 and D − σ/2 < y < D are practically almost
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excluded for the monomers. Thus, one could argue that the
parameter D of the continuum model should be compared to
the parameter D + 1 of the lattice model. Such ambiguities in
the comparison will not matter if D is very large, of course. To
be better able to compare data of both models directly, we shall
introduce the notation of an effective strip thickness Deff, with
Deff = D + 1 in the lattice case and Deff = D for the continuum
model.

For the off-lattice model, chain configurations are equili-
brated by using standard Molecular Dynamics (MD) methods
applying the Langevin thermostat as usual,85 for all monomers
i = 1, . . . , N ,

md2r⃗i/dt2 = −∇(ULJ +UFENE +Ub +Uwall)
− Γdr⃗i/dt + f⃗ Ri (t), (11)

where m is the mass of a monomer (we choose units such that
m ≡ 1), r⃗i(t) = (xi(t), yi(t)) is the position of monomer i at time
t, Γ is the monomer friction coefficient, and f⃗ Ri (t) is a random
force, satisfying the standard fluctuation dissipation relation
(remember we deal with d = 2 dimensions)

⟨ f⃗ Ri (t) · f⃗ Rj (t ′)⟩ = 4kBTΓδi jδ(t − t ′). (12)

The reduced unit of time then is (mσ2/ϵ)1/2, and this set of
equations of motion then is integrated with the reduced time
step ∆t = 0.01, applying the algorithm of van Gunsteren and
Berendsen.86 Typically the length of the runs was 1000 × 106

time steps.
We note that slightly more complicated models of this type

can serve as coarse-grained models for chemically specific
macromolecules exhibiting some angular rigidity, e.g., poly-
vinyl alcohol,87 but this is not our focus here.

III. SINGLE CHAINS IN BULK DILUTE SOLUTION:
A COMPARISON BETWEEN THE LATTICE
AND THE CONTINUUM MODEL

In this section, we demonstrate that the scaled mean square
end-to-end distance and the scaled mean square transverse

fluctuation of two-dimensional semiflexible chains of contour
length L exhibit an almost universal behavior, when one studies
these quantities as a function of the dimensionless parameter
L/ℓp, i.e., measuring the contour length in units of the persis-
tence length.

Of course, such a type of scaling is already suggested by
the Kratky-Porod model,62,63 which would yield for the mean-
square end-to-end distance ⟨R2

N⟩ for a wormlike chain,

⟨R2
N⟩/(2ℓpL) = 1 −

ℓp

L
[1 − exp(−L/ℓp)]. (13)

Evidently for L ≪ ℓp the chain behaves like a rigid rod, ⟨R2
N⟩

= L2, while the limiting behavior for L ≫ ℓp is that of a
Gaussian coil, ⟨R2

N⟩ = 2ℓpL. Thus, it is natural to provide a
plot of our simulation results in the normalization suggested
by Eq. (13), studying ⟨R2

N⟩/(2ℓpL) as a function of L/ℓp
(Fig. 3(a)). It is seen that on the log-log plot there are essentially
two regimes of straight lines, with slopes of unity and one
half, respectively. The regime with slope unity is the rod-
like regime expected from Eq. (13), and there the lattice and
continuum results precisely superimpose, which is no surprise
at all, of course. As expected, the rod regime stops near L/ℓp
≈ 1. While Eq. (13) would predict for L/ℓp ≫ 1 a horizontal
plateau, i.e., slope = zero on the log-log plot, this regime of
Gaussian behavior is completely absent. This breakdown of
the Kratky-Porod model in d = 2 dimensions due to excluded
volume forces has been studied in earlier work55–57,60,80 but
the new feature of Fig. 3(a) is that the behavior is almost
universal. Only on magnified scales (inset of Fig. 3(a)) can
one distinguish that the continuum model data and the lattice
model data settle down on two distinct parallel straight lines
for L/ℓp > 10. In fact, for L ≫ ℓp we expect a behavior typical
for SAW’s in d = 2, namely,

⟨R2
N⟩ = Aℓ1/2

p L3/2, L ≫ ℓp, (14)

where the dimensionless amplitude factor A is a nonuniversal
constant. Fig. 3(b) hence presents a plot of ⟨R2

N⟩/(2Lℓp(L/
ℓp)1/2)which shows in more detail how the limiting behavior of
Eq. (14) is approached. One can see that in the crossover region

FIG. 3. (a) Log-log plot of ⟨R2
N⟩/(2Lℓp) as a function of L/ℓp, combining the result of both MC and MD simulations, for the models of Sec. II. MC

data include many chain lengths up to N = 25 600, for three choices of the stiffness: ℓp/ℓ = 6.46 (qb = 0.1), 20.21 (qb = 0.03), and 118.22 (qb = 0.005),
respectively. MD data80 (indicated as squares) are for 16 ≤ N ≤ 2048, with 0 ≤ κ ≤ 320 (ℓp/l ≈ 1.66κ). The dashed and dotted-dashed lines indicate the rod
regime and the excluded volume power law, respectively. No adjustable parameters whatsoever have been used in this plot. The inset shows the same data
in the range from 1 < L/ℓp < 140, and separate straight lines were fitted to the data from MD and MC for L/ℓp > 10, respectively. (b) Log-log plot of the
dimensionless ratio ⟨R2

N⟩/(2L3/2ℓ1/2
p ) versus L/ℓp, using the same (non-universal!) amplitude factors A/2= 0.31 for the lattice model and A/2= 0.37 for the

continuum model, respectively. Note that statistical errors of the MC data are smaller than the size of the symbols throughout. In (b), statistical errors of the MD
data are almost twice the size of the squares, for L > ℓp, but not shown for the sake of clarity.
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between rods and SAW’s, namely, for 1 ≤ L/ℓp ≤ 10, there
occurs some overshoot, and this overshoot is more pronounced
for the lattice model than for the continuum model. Of course,
this behavior in the crossover region is quite nontrivial, and
there is no simple interpretation by scaling arguments known.

Next we consider transverse fluctuations of the semiflex-
ible chains. For this purpose we introduce an instantaneous
coordinate system (ξ,η) for each configuration of the chain
such that the ξ-axis is oriented along the end-to-end vector of
the chain, so ξ̂ = R⃗N/|R⃗N | is a unit vector along the ξ direction.
We then define the transverse fluctuations as

ℓ2
⊥ =

1
N

N
i=1

η2
i , (15)

with (ξi, ηi) being the coordinates of the ith monomer in this
(ξ,η) coordinate system. Fig. 4 then presents a plot of ⟨ℓ2

⊥⟩1/2/L
versus L/ℓp. In the rod regime, it is well-known15,88,89 that

⟨ℓ2
⊥⟩ ∝ L3/ℓp, L ≪ ℓp, (16)

while for L ≫ ℓp, the configuration of the chain simply is a
swollen coil, and the direction of ξ̂ does no longer play a special
role: so we expect ⟨ℓ2

⊥⟩ = A′ℓ1/2
p L3/2, compare with Eq. (14),

where A′ is another amplitude factor. Hence, ⟨ℓ2
⊥⟩1/2/L

= (A′)1/2(ℓp/L)1/4 in this limit, and this is what we see in Fig. 4.
The result that Eq. (16) also applies to the lattice chains is
rather unexpected, of course, since on the lattice for L ≪ ℓp
typical configurations have either no kink at all on the length
L or exhibit a single kink (the walk goes straight along a
lattice direction for L′ steps and then L′′ steps in the direction
perpendicular to the direction of the first L′ steps with L
= L′ + L′′, while walks with two or more kinks make negli-
gible contributions). Figs. 3 and 4 hence reveal that the average
geometrical properties of semiflexible polymers depend only
very little on the model used to describe them, lattice and
continuum models exhibit almost no difference, although the
actual conformations are very different.

We also suggest that a plot of experimental data of
ln(⟨ℓ⊥⟩1/2/L) versus ln(L/ℓ) would be a good way to obtain
an estimate for the persistence length ℓp, since the maximum
of this curve (Fig. 4) seems to occur for ln(L/ℓp) = 1, i.e.,
ln(L/ℓ) = 1 + ln(ℓp/ℓ). This analysis, applied to atomic force
microscope (AFM) images of DNA chains (as are available

FIG. 4. Logarithm of the scaled transverse fluctuation ⟨ℓ2
⊥⟩1/2/L as a func-

tion of ln(L/ℓp) with data of both MC and MD for various choices of the
persistence length listed in Table I, as indicated. The asymptotic power laws
⟨ℓ2
⊥⟩1/2/L ∝ (L/ℓp)1/2 for L < ℓp and ⟨ℓ2

⊥⟩1/2/L ∝ (L/ℓp)−1/4 for L > ℓp
are indicated by solid straight lines.

in the literature90,91), may be an interesting alternative to the
traditional fitting of the Kratky-Porod results, Eq. (13), to
the chain linear dimensions of such semiflexible polymers
adsorbed to substrates. Since Eq. (13) breaks down in d = 2,
for L ≫ ℓp, use of Eq. (13) may lead to significant systematic
errors.

IV. SEMIFLEXIBLE POLYMERS CONFINED IN A SLIT
WITH REPULSIVE BOUNDARIES

We now study semiflexible polymers in quasi-one-dimen-
sional confinement, extending the discussions that were
already given in our preliminary work.34,36 The considered
lattice model is defined in Fig. 2(c), and the continuum model
(sketched in Fig. 2(b)) is defined precisely by Eqs. (6)–(10).

In computer simulations of very long polymer chains in
confinement, a crucial question is whether the statistical effort
invested is large enough so that the configuration space of the
model is sampled sufficiently well. This problem is a serious
concern both for the PERM Monte Carlo algorithm (when
the coarse-grained free energy function of the model splits
into distinct “valleys” separated by entropic barriers, one must
make sure that all “valleys” are properly sampled50) and for
MD. In MD, we expect very long relaxation time to form
hairpins [Fig. 2(a)] and to equilibrate them; it might occur that
hairpins form primarily at the free chain ends and then diffuse
along the contour of the chain towards its center.

To clarify such problems, we have recorded time se-
quences of snapshot pictures of the chain configurations for
representative choices of parameters. Fig. 5(a) (Multimedia
view) gives a few typical examples. One can see that at the
first time (t = 527), there is no hairpin, at the second time
(t = 886), there is a hairpin at the rightmost part of the chain
and another one in the central part of the chain, and at the
third picture (t = 1456), all these structures are gone, and a
double hairpin configuration (similar to the qualitative sketch
in Fig. 2(a)) near the left end of the chain has formed. At
a still later time (t = 1700), a state with no hairpin is found
again. Thus, one can see that (for the chosen parameters)
hairpins are quickly formed and relax again, the “lifetime” of
hairpins being small in comparison to the length of the MD
run. For the chosen parameters the polymer neither resembles
a string of blobs nor a flexible rod, but takes intermediate
types of states. For D ≪ ℓp (Figs. 5(b) and 5(c) (Multimedia
view)), one finds in practice never any configurations with
hairpins, the latter occur typically when ℓp ≤ D ≤ 3ℓp, while
for still wider strips, the “string of blobs” picture starts to apply.
However, for the choice D = 80, ℓp = 3.30ℓ shown in Fig. 5(b)
(Multimedia view), the chain of length N = 1024 is merely
long enough to form 2-3 blobs only. From the snapshots, it also
is evident that monomers occur near the walls occasionally,
but much more frequently they are near the center of the
strip.

Fig. 5 (Multimedia view) does display some qualitative
similarity to the description proposed by Odijk15 who intro-
duced for the case D < ℓp the concept of the deflection length,
Eq. (1), see also Fig. 2(a), using the Kratky-Porod model,
Eq. (2). It is an interesting issue to examine to what extent our
simulations confirm this description quantitatively.
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FIG. 5. (a) Selected snapshots from the MD simulation for N = 1024 D = 80, ℓp = 35.2ℓ (i.e., the choice κ = 21.6) at various times (the time of the snapshots
is the number in the left upper corner of the snapshot, given in units of 5000 MD time units, times t = 527, 886, 1456, and 1700 being shown). Note that the
resolution of the snapshot is not high enough to display the individual effective monomers of the simulated model (at high resolution, the snapshots would
resemble Fig. 2(b)). Note that the x and y axes are plotted with equal length scale, avoiding any distortion between the length in x and y directions. The solid
straight lines represent the two boundaries of the strip. (b) Snapshots for chains with N = 1024 for D = 80 and three choices of persistence length, ℓp = 3.30ℓ,
35.2ℓ, and 212.4ℓ, as indicated. (c) Snapshots for chains with N = 256 for D = 18 and three choices of persistence length, ℓp = 3.30ℓ, 17.43ℓ, and 105.60ℓ, as
indicated. Movies shown online are made with visual molecular dynamics (VMD).51 (Multimedia view) [URL: http://dx.doi.org/10.1063/1.4929600.1] [URL:
http://dx.doi.org/10.1063/1.4929600.2] [URL: http://dx.doi.org/10.1063/1.4929600.3] [URL: http://dx.doi.org/10.1063/1.4929600.4] [URL: http://dx.doi.org/
10.1063/1.4929600.5] [URL: http://dx.doi.org/10.1063/1.4929600.6]

A naive analysis of the configurations can be based on a
study of the local angle φi of the bond between monomers i
and i + 1 and the x-axis, and search for the locations of local
maxima of cos φi along the chain contour: in the (x, y)-plane
these local maxima correspond to extrema of the curve that is
generated by connecting the discrete points (xi, yi) making the

monomer positions along the chain (Fig. 6(a)). The distance
between subsequent extrema could be taken as a first estimate
of the deflection length λ.

However, little thoughts reveal that such a procedure
would be quite misleading: the bond angles θi between subse-
quent bonds due to thermal fluctuations have random values

FIG. 6. (a) Plot of a small part of a typical configuration of a chain with N = 1024 monomers for the case D = 36, κ = 128. Each solid dot indicates the (x, y)
coordinates of a monomer: note that the lengths in x and y directions are plotted with equal scale. The arrows show selected values of cos φi: for the shown
“wiggle” from the maximum with cos φi = 0.997 to the next minimum of the contour with cos φi = 0.999, only 10 monomers occur, but ∆y ≈ 2 (see text).
(b) and (c) Comparison of two configurations after smoothing (full curves) to their corresponding original unsmoothed configurations (broken curves) for the
case N = 512, D = 36, and κ = 96. Note that here the scale for the x-axis is compressed in comparison to the scale for the y-axis by a factor of 6. The dots show
the “deflection points” that are kept for the measurement of P(λ), λ being the distance between neighboring deflection points.
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of order ±
√

kBT/κ (equipartition theorem). Adding up such
random increments gives rise to “wiggles” in the chain config-
urations on many length scales. Of course, the discreteness
of the chain provides a small scale cutoff, and we need to
average of the order of 10 subsequent monomers to obtain this
random walk-like behavior of the angular increments, but such
small scale wiggles create a displacement ∆y in y-direction
which is of order unity only, not of order D. The deflection
length, however, is intended to rather measure the length scale
of wiggles in the chain configurations, with displacement of
order D.

In order to measure this large scale, we have to construct a
coarse-grained configuration. A practically useful prescription
is to apply a coordinate smoothing procedure

xi = (2m + 1)−1
i+m
j=i−m

x j, yi = (2m + 1)−1
i+m
j=i−m

y j . (17)

We have found that for persistence lengths of the order of 100,
a value of m = 31 yielded satisfactory results, smoothing out
the small scale wiggles but leaving the large scale configuration
of the chain intact (Figs. 6(b) and 6(c)). Of course, there is
still the problem that near an extremum of the coarse-grained
curve, φi changes its sign many times, leading to several close
by extrema of cos φi. For automatic detection of local maxima
for cos φi, only sites i that satisfy cos φi > c were considered
(with a threshold value c = 0.998 if the persistence length
is of order 100, i.e., | φi | ≈ 4◦), and among the “deflection”
sites thus found only those are kept, which are more distant
from each other than a distance d = λ/3 where λ is the Odijk
result, Eq. (1). These remaining extrema are indeed the desired
deflection points of the coarse-grained configuration where the
distance∆y in y-direction from one deflection point to the next
one is much larger than unity (Figs. 6(b) and 6(c)). From this
coarse-graining procedure, we obtain estimates for both the
average deflection length λ and the width∆λ of the distribution
function P(λ), see Table II. It is seen that the results are of the
same order as Eq. (1); of course, in Eq. (1), a prefactor of order
unity is suppressed, as always in scaling arguments, and hence
perfect agreement cannot be expected. The fact that ∆λ and
λ are of the same order reflects the irregularity of the chain
configurations, expected from entropic reasons.

TABLE II. Selected estimates for the deflection length.

N D κ λ (Eq. (1)) λ ∆λ

512 36 96 59.3 76.2 28.5
1024 36 128 65.2 85.0 30.9
1024 80 128 111.0 102.4 43.9

The first question to ask is whether or not confinement
leads to a change of the local persistence length (which we
always define from Eq. (5)). Fig. 7 shows the unexpected
result that the persistence length ℓp(D) does depend strongly
on the strip width D for the lattice model when D is less
than the persistence length of the unconfined chain in the
bulk (ℓbulk

p = ℓp(D → ∞)), while for the off-lattice model, ℓp
remains completely unaffected by the confinement. When we
henceforth use ℓp without any further specification, always
the bulk value will be meant. This finding implies for the
continuum model that the average orientational correlation
between subsequent bonds (as measured by ⟨cos θ⟩) is the
same for the confined chains as it is in the bulk, although for
small D (and in the absence of hairpins), all bond vectors of
the confined chains are oriented almost parallel to the x-axis,
while for semiflexible polymers in the bulk, this dominance
of one orientation does not occur. For off-lattice semiflexible
chains, we have ⟨θ2⟩ ≈ ℓ/ℓp and if D ≪ ℓp we can expect that
after nλ = λ/ℓ steps along the chain, the angle θ(nλ) has added
up in a random walk-like fashion,15 i.e., ⟨[θ(nλ)]2⟩ = nλℓ/ℓp
= λ/ℓp. However, this growth of ⟨[θ(nλ)]2⟩ must stop when
⟨[θ(nλ)]2⟩ = (D/λ)2, and equating both expressions readily
yields the deflection length,15 Eq. (1). The different behavior
of the lattice model can be interpreted by the fact that the
typical configuration of the chain (Fig. 1(c)) consists of a
sequence of kinks, where at each kink point a sequence
of nx bonds in x-direction is followed by ny bonds in
y-direction. The numbers of nx,ny follow an exponential
distribution57

P(nx,ny) = ( ℓ
ℓp

)2 exp(−nxℓ/ℓp) exp(−nyℓ/ℓp). (18)

In a bulk square lattice, both nx and ny can vary from 1 to
infinity. For large ℓp/ℓ, the average length of a sequence can

FIG. 7. Comparison of the persistence length ℓp/ℓ under confinement in a strip and in the bulk for the continuum model (a) and for the lattice model, using
strip widths from D = 8 to D = 320 (b). Note that the estimates of persistence length under confinement in (a) were obtained by taking the average of ℓp(D) for
several choices of D at fixed κ. Note that error bars in this plot are smaller than the size of the symbols throughout.
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FIG. 8. (a) MC data for ⟨R2
∥⟩1/2/L plotted vs. chain length N , for D = 320, and two choices of the persistence length, ℓp/ℓ = 59.22 (qb = 0.01) and

ℓp/ℓ = 30.02 (qb = 0.02), respectively. The solid horizontal lines indicate the extrapolation towards N → ∞. (b) Log-log plot of the dimensionless chain
extension ⟨R2

∥⟩1/2/L versus the ratio (ℓp/D)1/3 for data from both MD and MC. The dashed straight line indicates the De Gennes regime for D > ℓp,

⟨R2
∥⟩1/2∝ L(ℓp/D)1/3. The solid line shows a fit of the MD data to the Odijk prediction. Note that the MC data were all extrapolated towards N → ∞, as shown

in part (a), while the MD data refer to specific values of N in the range 256 ≤ N ≤ 1024 for D = 18,36, and 80, as indicated. Statistical errors are at most of the
size of the symbols.

be computed simply as

⟨nx⟩ =
∞

0

dnx

∞
0

dny nxP(nx,ny) = ℓp/ℓ, unconfined case,

(19)

and the same result would be obtained for ⟨ny⟩, since in the
bulk both lattice directions are equivalent. However, for the
confined system, ny must be in the range 1, . . . ,ny, . . . ,D
(Fig. 2(c)). While Eq. (18) implies that a kink with some choice
of (nx,ny) occurs with probability unity, for the confined sys-
tem Eq. (18) allows for the occurrence of a kink only with the
reduced probability Pkink = 1 − exp(−D/ℓp). This reduction in
the number of kinks must show up in the distance between
subsequent kinks along the x-direction, and hence, we tenta-
tively suggest

⟨nx⟩ = (ℓp/ℓ)/Pkink = (ℓp/ℓ)/[1 − exp(−D/ℓp)]. (20)

The data of Fig. 7(b) are indeed compatible with this sim-
ple argument, implying that for D < ℓp, the effective persis-
tence length34 ℓp(D) ≡ ⟨nx⟩ℓ ≈ ℓ2

p/D. Hence for D < ℓp in the
case of the lattice model, it will matter whether we study the
behavior of the chain linear dimensions as a function of ℓp/D
or ℓp(D)/D, respectively. For simplicity, in this discussion

we have ignored the possible effect of hairpins completely
(note that when hairpins occur and the end-to-end vector is
oriented from left to right, numbers nx of sequences parallel
and antiparallel to the x-component of the end-to-end vector
are not equivalent).

We first demonstrate that the possible renormalization
of the persistence length does not matter when we study
the regime where the Daoud-De Gennes40 prediction applies
(Fig. 8),

⟨R2
∥⟩1/2 ∝ (ℓp/D)1/3L. (21)

From the MC calculation, data for a very wide range of N
are available, and hence for each choice of D and ℓp, one can
perform an extrapolation to N → ∞. Since the variation of
⟨R2

∥⟩1/2/L with N is non-monotonic (Fig. 8(a)), such a proce-
dure would be completely misleading if only data for rather
short chains (on the left side of minimum) were available.
Thus, no such extrapolation was attempted for the MD data, but
nevertheless a reasonable scaling could be obtained (Fig. 8(b)).
We note that the nonmonotonic variation of Fig. 8(a) is not
specific for the lattice model; a similar behavior was also found
for a chain of tangent hard spheres.37 The location of this
minimum of the ratio ⟨R2

∥⟩1/2/L depends on both D and ℓp, as
demonstrated in our earlier work.34 It is seen that the lattice

FIG. 9. Log-log plot of ⟨R2
g∥⟩1/2/L (a) and ⟨R2

∥⟩1/2/L (b) versus ℓp/D. Various values of qb are shown, as indicated. Note that all these data were obtained
by first extrapolating the data for finite L (see Fig. 8(a)) at fixed qb and fixed D towards L→ ∞.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

132.170.15.255 On: Fri, 28 Aug 2015 17:02:24



243102-10 Huang et al. J. Chem. Phys. 143, 243102 (2015)

FIG. 10. Log-log plot of ⟨R2
∥⟩/(2ℓpL) (a) or ⟨R2

∥⟩/(2ℓp(D)L) (b), versus L/(2ℓp) or L/(2ℓp(D)), respectively. For the MD data, both L, D, and ℓp were
varied, as indicated in the key to the figure. For the MC data, the choice qb = 0.02 (i.e., ℓp = 30.02ℓ) was fixed and L was varied, showing five different choices
of D, as indicated.

and off-lattice models yield a qualitatively similar behavior,
the constant of proportionality in Eq. (21) is somewhat smaller
for the lattice model, and also the approach to saturation in
the limit of strong confinement (ℓp/D ≫ 1) is much slower. In
view of the fact that for the lattice model in the regime ℓp > D,
the persistence length gets renormalized to much larger values,
it may seem paradoxical that nevertheless the scaled chain
extension ⟨R2

∥⟩1/2/L is smaller than in the continuum case.
However, the explanation of this behavior is that those parts of
the chain that are oriented along the y-axis (Fig. 2(c)) do not
contribute to the extension in x-direction at all, while in the
continuum case the angles φi due to the weak deflections all
are rather small and hence all bonds contribute predominantly
to the chain extension along the x-axis. In fact, as we shall see
later, in the lattice model monomers are less repelled by the
confining boundaries than in the continuum case (compare the
density profiles across the slit in Figs. 12(a) and 13(a)).

In the lattice model, both the mean square radius ⟨R2
∥⟩

and the mean square gyration radius ⟨R2
g∥⟩ in x-direction have

been obtained for a wide range of choices of both D and the
persistence length ℓp, and display the expected scaling as a
function of ℓp/D very well (Fig. 9), in the limit of very long
chains. We stress that for the MC data in Figs. 8(b) and 9,
the unrenormalized values of ℓp (i.e., the persistence length of
the unconfined chains in the bulk) were used in the variables
(ℓp/D)1/3 or ℓp/D, respectively. However, if we use ℓp(D)/D
rather than ℓp/D for such plots, they look very similar: this
happens because ℓp(D)/D differs from ℓp/D only for ℓp/D
> 1 and in this region the scaling functions in Figs. 8(b) and 9
are almost flat.

Next we discuss the variation of the linear dimension
with chain length, normalizing ⟨R2

∥⟩ by the Kratky-Porod
prediction 2ℓpL, and measure the contour length L in units
of the Kuhn length 2ℓp (Fig. 10). There are three regimes:
for L/(2ℓp) < 1, the chains behave like rods, ⟨R2

∥⟩ = L2 and
hence ⟨R2

∥⟩/(2ℓpL) = (L/ℓp)/2, the first linear regime in the
log-log plot. For wide strips (D ≫ ℓp), there is an intermediate
regime, where the chain behaves like a weakly constrained free
chain [Eq. (14)], and hence ⟨R2

∥⟩/(2ℓpL) varies like (L/ℓp)1/2.
For narrow strips (such as the case D = 16, ℓp = 30.02ℓ in
Fig. 10(b)), this regime is absent, of course. For the MD data
in Fig. 10(a), this regime is realized by choosing not so large

values of ℓp, since extremely large values of N are not acces-
sible. The MC data show a third regime where ⟨R2

∥⟩/(2ℓp(D)L)
again varies linearly with L/(2ℓp(D)), which simply is the
Daoud-De Gennes regime again (where the chain is a string
of blobs). For the rather wide strip used for the MD data,
this regime cannot be recognized yet in Fig. 10(a). When we
study the regime D < ℓp for the lattice model and consider the
crossovers with increasing L, it is the renormalized persistence
length ℓp(D)which matters for the crossover to the final regime
⟨R2

∥⟩ ∝ L2 for large L. Therefore, we used ℓp(D) in Fig. 10(b).
At the first glance, Fig. 10 seems at variance with Fig. 8,

since from the MD data plotted there no evidence for the
string of blobs-picture of Daoud and De Gennes40 was seen.
However, this is not the case: when we plot ⟨R2

∥⟩/(ℓ1/2
p L3/2)

versus the effective number L/Lcross of blobs in the string
(Fig. 11), we find that a significant part of the MD data falls
in the range 4 < L/Lcross < 30 and roughly is consistent with
Eq. (21), which in this representation can be rewritten as

⟨R2
∥⟩/(ℓ1/2

p L3/2) ∝ (L/ℓp)1/2(ℓp/D)2/3 = (Lℓ1/3
p /D4/3)1/2.

(22)

Of course, the MC data include a much wider range of L/Lcross,
including the chains that are almost unperturbed by the
confinement (L/Lcross < 1, then ⟨R2

∥⟩/(ℓ1/2
p L3/2) is essentially

constant), as well as very long chains (where L/Lcross > 100).

FIG. 11. Log-log plot of ⟨R2
∥⟩/(ℓ1/2

p L3/2) versus L/Lcross= Lℓ
1/3
p /D4/3 in-

cluding both the MD and MC data. Note that Lcross denotes the contour length
where the crossover from the unconfined SAW to the string of Daoud-De
Gennes blobs occurs (so L/Lcross is essentially the number of blobs). The
straight line illustrates Eq. (22).
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FIG. 12. Rescaled monomer density profile Deffρ(y) versus ξ = y/Deff for the case D = 80 (a) and D = 320 (b), according to the MC model. Several choices
of ℓp/ℓ are included, as indicated. Full curves show the theoretical prediction, Eq. (23), with the constant C fitted as C = 10.38. Here, Deff =D+1.

A very interesting aspect is the monomer density profile
near the wall. For flexible chains, it was shown46 that for the
lattice model this profile can be very accurately described by

Deffρ(y) = C[ξ(1 − ξ)]4/3, ξ = y/Deff, (23)

where Deff = D + 1. This form is compatible with the density
profile expected for a semi-infinite solution (with density ρb in
the bulk) of flexible chains near a hard wall,92,93

ρ(y) = ρb ρ̃(y/R), R ≈ ℓ(L/ℓ)ν, (24)

with ν = 3/4 in d = 2 dimensions, and ρ̃(ξ) ∝ ξ1/ν for ξ ≪ 1.
However, Semenov77 predicted on the basis of the Kratky-
Porod model that

ρ(y)/ρb ∝ y2/3 for ℓ ≪ y ≪ ℓp, (25)

irrespective of dimensionality. However, the data for the lattice
model do not yield any evidence in favor of this prediction
(Fig. 12).

For the off-lattice case the conclusion is different; how-
ever, the monomer density near the walls does not extrapolate
to a nonzero value when ξ = y/Deff → 0 or → 1, Fig. 13(a),
and when ℓp is large, Eq. (23) then no longer provides a good
fit of the data. Thus, it is tempting to try a log-log plot of
ρ(y) versus y . Of course, data for y > D/4 are affected by the
saturation of the profile in the center of the film and have to

be excluded (one should only use data far outside the range of
the repulsive wall potential). One sees that in the intermediate
regime, the MD data indeed are consistent with a crossover of
the “effective exponent,” defined in terms of the apparent slope
where a straight line can be fitted to the data of the log-log
plot near y ≈ 10 from 4/3 (for flexible chains) to 2/3 (for very
stiff chains). This finding hence is compatible with Semenov’s
prediction, Eq. (25). Here, the possibility of small bond angles
implicit in the Kratky-Porod model is a crucial feature, and
hence, it is not so surprising that for the lattice model Eq. (25)
does not hold. Of course, very close to the wall the actual wall
potential matters, and hence, the power laws are expected to
hold only for y ≫ ℓ, see Eq. (25).

Very interesting is also the behavior of the end monomer
distribution ρe(y). For flexible chains, the scaling prediction
is46

ρe(y) = 1
Deff

Ce[ξ(1 − ξ)]25/48, (26)

and indeed this (empirical) function provides a very good fit
of the MD data for flexible chains (κ = 0), with the constant
Ce ≈ 2.71 being of the same order as for the SAW model
on the square lattice46 (Ce = 2.85). Again one sees that with
increasing stiffness, the end monomer density near the walls
gets enhanced, and for very stiff chains a limiting behavior

FIG. 13. (a) Plot of the scaled monomer density Deffρ(y) as a function of ξ = y/Deff for the continuum model of semiflexible chains with N = 1024, as
obtained from MD simulations, for a strip of width Deff =D = 80, and several choices of the persistence length ℓp/ℓ, as indicated. The solid curve shows the
fit to Eq. (23) for the fully flexible case, with the constant C being C = 10.41. (b) Log-log plot of the monomer density ρ(y) versus y for N = 1024, D = 80
and 160, and various stiffnesses as indicated by the choices for ℓp/ℓ. The solid straight lines indicate the theoretical power laws ρ(y)∝ y4/3 for the flexible and
ρ(y)∝ y2/3 for Kratky-Porod chains, respectively.
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FIG. 14. Scaled end monomer density profiles ρe(ξ)Deff as a function of ξ = y/Deff for the continuum model of semiflexible chains with N = 1024, as
obtained from MD simulations (a), and for the lattice model of chains with 50 000 < N < 200 000 (b). Note that Deff =D was chosen for the off-lattice model
but Deff =D+1 for the lattice model, and several choices of the persistence length are shown as indicated. The full curve shows a fit of Eq. (26) for the fully
flexible case, with the constant Ce being Ce = 2.71 for the continuum, and Ce = 2.85 for the lattice.

ρe(y) ≈ const seems to be reached (apart from a small region
ξ < 0.1 or 1 − ξ < 0.1, where ρe is slightly depressed, but
this could be a residual effect from the nonzero range of the
repulsive wall potentials). Thus, we speculate that for semiflex-
ible chains (in the limit N → ∞ and then ℓp → ∞ in a semi-
infinite dilute solution), there is no analogue of the power law
for the monomer density, Eq. (25), when one considers the
density of end monomers instead. In the lattice model, also an
essentially constant distribution of ρe(y) across the strip was
found (Fig. 14(b)). While in the regime Deff < ℓp the behavior
of ρ(y) and ρe(y) for the lattice model is very similar, this is
not true for the bead-spring model of semiflexible chains in the
continuum.

V. CONCLUSIONS

We now proceed by summarizing the central findings
of the present work. We have simulated two rather different
coarse-grained models of semiflexible polymers in two space
dimensions, over a wide range of chain lengths and persis-
tence lengths, under good solvent conditions, both in the bulk
and under confinement in a strip of width D with repul-
sive boundaries. One model is a self-avoiding walk on the
square lattice, where stiffness is controlled by the energy
cost ϵb if the walk makes a kink of ±90◦. The density of
the kinks for large ϵb/kBT decreases exponentially with this
energy cost, proportional to exp(−ϵb/kBT), and the persistence
length ℓp then is essentially the inverse of the kink density,
ℓp ∝ exp(ϵb/kBT), and can also be interpreted as the average
length of straight sequences of bonds between two neighboring
kinks along the chain contour. The other model is the standard
Grest-Kremer85 bead-spring model, amended by the stan-
dard cosine potential Ub(θ) = ϵb(1 − cos θ) [Eq. (3)] between
neighboring bonds. For large ϵb/kBT , this potential essentially
becomes Ub(θ) ≈ (ϵb/2)θ2, and hence, the model (apart from
excluded volume) can be considered as a discretization of the
well-known Kratky-Porod model of wormlike chains, Eq. (2),
so ϵb simply corresponds to the bending rigidity κKP of that
model. Then the persistence length simply is proportional to
ϵb/kBT , and this is confirmed by the simulations (see, e.g.,
Fig. 7(a)). Note that in the presence of excluded volume, a
valid definition of the persistence length always is derived from

⟨cos θ⟩, the average cosine of the angle between neighboring
bonds; this is a meaningful measure of local chain stiffness,
unlike the asymptotic decay of bond vector correlations for
bonds that are far separated along the chain contour (this
asymptotic decay is controlled by excluded volume effects,
ignored in Eq. (2)).

We have obtained the mean square end-to-end distance of
both models in the bulk, applying Monte Carlo methods for
the lattice model and molecular dynamics (with a Langevin
thermostat) for the off-lattice model. We find that the cross-
over from the rod-like regime (for contour lengths L < ℓp) to
the self-avoiding walk-like regime (described by Eq. (14)) is
qualitatively similar in both models, when one studies these
linear dimensions as functions of the scaling variable L/ℓp
(Fig. 3). The amplitude prefactors of the power laws in the
asymptotic scaling regime for both models differ slightly, as
expected, since only exponents are universal, but not ampli-
tude prefactors. Since in the rod regime the data trivially are
model-independent (⟨R2

N⟩ = L2 for L ≪ ℓp), it follows that
crossover scaling functions of both models cannot be identical
(Fig. 3(b)). In fact, if the asymptotic power law is scaled out,
one finds in the crossover scaling functions in the regime 1
< L/ℓp < 10 a nontrivial maximum, and there is no univer-
sality of these crossover scaling functions. However, when one
considers the reduced transverse fluctuation (Fig. 4), one finds
in the crossover scaling plot a maximum, whose position is uni-
versal, at least within the accuracy of the present estimations,
namely, it occurs at ln(L/ℓp) ≈ 1. Providing such a plot from
the analysis of experimental AFM pictures of semiflexible
polymers adsorbed at planar substrates could be an alternative
to the experimental estimation of ℓp from the Kratky-Porod
formula for the mean square end-to-end distance, which is
questionable due to its neglect of excluded volume effects
(it describes a crossover to Gaussian coil behavior, which in
reality cannot occur). Thus, our comparison of the two studied
models is not just an academic exercise but could be a useful
guide in practice.

While the disparity of local chain conformations be-
tween both models hence has only minor consequences, as
far as the bulk properties are concerned, this is no longer true
when one considers confinement in strips with D < ℓp. One
interesting feature is that in the lattice model, the effective
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persistence length ℓp(D) gets renormalized, while for the con-
tinuum model, it remains unchanged (Fig. 7). This discrepancy
can be understood from the fact that on the lattice straight
sequences of bonds along the y axis get more and more
suppressed (Fig. 2(c)), while in the continuum bending of
the chain (on scales less than the deflection length λ, cf.
Figs. 2(a) and 5 (Multimedia view)) is not affected. A second
very interesting discrepancy between both models is that in
the continuum model entropic depletion of monomers near
the repulsive walls always occurs (Fig. 13), while there is
no such depletion for rather stiff lattice chains (Fig. 12). For
flexible chains, both on the lattice and in the continuum,
near a repulsive boundary depletion does occur, ρ(y) ∝ y4/3

for ℓ ≪ y ≪ D, and the monomer density profile across the
strip exhibits a scaling, which is almost universal (again, a
simple model-dependent amplitude factor occurs, cf. Eq. (23)).
However, for rather stiff chains in the continuum a different
power law has been predicted on the basis of the Kratky-
Porod model by Semenov,77 and our data (Fig. 13(b)) seem
to be compatible with this prediction. However, while for
flexible chains, the chain ends also show an entropic depletion
effect, but described by different exponents (Eq. (26)), and
this prediction has been verified by both the lattice and the
continuum model, no such depletion effect can be detected for
semiflexible chains. For D < ℓp, the end monomer profile is
almost constant across the strip, both for the lattice and the
continuum model (Fig. 14). A third discrepancy is the fact that
for the semiflexible bead-spring model, the concept of Odijk15

of a deflection length (Fig. 2(a)) obviously is applicable for
strongly confined chains in the continuum (Fig. 5 (Multimedia
view)) but meaningless for the lattice model. We also have
discussed the possibility to extract the distribution function
P(λ) of deflection lengths directly from a statistical analysis
of configurations of confined chains in the continuum model.
We have shown that after a suitable further coarse-graining of
the chain contours, necessary to remove small scale structure,
both the average deflection length λ and the fluctuation ∆λ
≡ (λ2 − λ

2)1/2 could be obtained. Both λ and∆λ are of the same
order as predicted (Eq. (1)).

However, for less extreme confinement (D > ℓp) again a
remarkable similarity between both models is found: there is
a crossover from rods (for L < ℓp) to self-avoiding walks (for
chains that are short enough that a single blob fits into the strip)
and further to the Daoud-De Gennes string of blobs. For the
Monte Carlo results, where a very wide range of L for every
choice of ℓp is spanned, these three regimes can be easily seen
(Fig. 10(b)), but for the MD results, they can also be inferred
for appropriate choices of ℓp and D. The scaling predictions
resulting from the string of blob picture are nicely verified for
both models (Fig. 11).

We also note that the snapshot pictures in the regime
ℓp < D < 3ℓp, where well-developed blobs do not yet fit into
the strip, clearly reveal hairpin formation, as proposed by
Odijk22 who also has estimated that hairpin formation involves
the crossing of a free energy barrier that is proportional to
ℓp for D ≪ ℓp. However, in the regime D < ℓp where the
theory applied, hardly any hairpins could be observed, and
hence, our simulations are not suited to test this theory. For
the three-dimensional case, a pioneering study of the effects of

hairpins on confinement of semiflexible polymers can be found
in Ref. 94.

Of course, for addressing experiments, an extension of
our study to three dimensions (quasi-one-dimensional confine-
ment in tubes with square, rectangular, or circular cross sec-
tion) would be very desirable but must be left to future work.
We note that in this case several additional complications arise,
such as the intermediate Gaussian regime of chain conforma-
tional statistics, and knot formation for very long chains.

However, the goal of this study was not to contribute
directly to the analysis of experiments but rather to understand
how different general assumptions implicit in the choice of
particular coarse-grained models do affect the physical prop-
erties of the studied macromolecular systems. In particular,
we have found in the bulk that the difference in local chain
conformations between lattice and continuum models does no
longer matter much, when one compares data for the same
choice of persistence length (although the dependence of ℓp on
the energy parameters is very different). Under confinement,
the absence of monomer depletion for rather stiff lattice chains
shows that discrete bond angles lead to a different physics in
comparison to continuous bond angles as possible for the off-
lattice model. We have argued, however, that both chains may
be physically relevant since different types of mechanisms for
chain rigidity occur for cases such as alkane-type polymers or
dsDNA.
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